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We study the averaged partition function for a quantum particle subjected to 
Gaussian noise using the path integral representation. The noise is characterized 
by a covariance function with a strength and a range. It falls off rapidly with 
distance but the analytic form at short distances and the dimensionality are 
important. The remaining parameter is the thermal length of the particle. For a 
finite range we study the behavior of the partition function over the entire 
domain of strengths and thermal lengths. The techniques used are successively 
more accurate upper and lower bounds that include contributions from configu- 
rations involving traps. Particular attention is paid to a self-consistent field 
analysis lower bound and to a nonlocal quadratic action bound. We also study 
the white noise limit, i.e., vanishing range with finite values of the other 
parameters. In one dimension the white noise limit leads to convergent results. 
In three or higher dimensions the divergent terms can be isolated and computed. 
In two dimensions the degree of divergences changes at a finite value of the 
product of the strength and thermal length squared. 
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1. INTRODUCTION 

The density matrix describes some important properties of a particle 
subject to a potential V(x). In the path integral representation, with units 
h - - m = l  

(xlip(fl)Ix2) = fx~'DBx exp [ - f0 PV(x(u))du ] (1) 
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Here 

d. J j (2) 

is the Wiener measure. 
fi need not be the physical inverse temperature of a heat bath. It may 

be a parameter. The density of states and momentum spectral density can 
be obtained by taking the inverse Laplace transform of the density matrix. 

The density matrix for the potential problem obeys the Bloch differen- 
tial equation. This is the simplest approach to finding O(fi) when the 
potential is a 8 function, a hard core, or is spatially localized. It is also the 
natural way to bring in the theory of differential equations, eigenfunction 
analysis, etc. On the other hand, the path integral (P.I.) approach leads to 
new analysis of the semiclassical limit. There are also approximation 
methods specific to the P.I., such as the mean path analysis of Feynman 
and Hibbs, (1) the lower bound Feynman variational principle, (2) and the 
Symanzik upper-bound technique. O) 

We will consider the case where V(x) is a random potential governed 
by a Gaussian probability distribution. The covariance is 

V(x) V(y) = W(x - y) = Wof ( x - y T ) (3) 

The bar indicates an average with the probability distribution. We will 
consider monotonic functions f(x) so that the covariance involves a length 
L and a strength W 0. The analytic form off(x) ,  e.g., exp(-Ix[),  exp(-x2) ,  
8(1 - ]x]), 8(x) is also important. 

Using the characteristic functional for a Gaussian process, the 
averaged density matrix is 

(x,,~,x2)=~X'DBxexp[ 1 ~ ~ - x(u'))dudu'J (4) 

We refer to the argument of the exponential as the "action." Since the 
action is invariant under the rigid translation x(u)-+ x(u) + x 2, ~ depends 
only on x I - x 2. The diagonal element (x  11~1xl) is independent of x I . Thus 
the trace, i.e., the partition function, is proportional to the volume occupied 
by the system. In the following we omit this factor and also drop the bar 
that refers to the average. 

The Gaussian random process can be considered as a limiting case of 
Poisson randomness. Let V(x)= 2N=w(X-  Ri), where R i is a site vector 
for an impurity, as in semiconductor physics. The atomic potential v(x) has 
a strength and a range. If the site positions are uncorrelated the averaged 
density matrix can be written as an explicit P.I. using the characteristic 
functional of a Poisson process. (4 6) It involves the density of the impurities 
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as well as the strength and range of the potential. This three-parameter 
problem reduces to a two-parameter Gaussian process at high densities. 
When v(x) is a screened Coulomb potential, L is screening length and W 0 
is proportional to the density of impurities as well as to L. The function 
f(x) takes the form exp[-Ix[] .  

Still available is the choice of a unit of length, and we will take L = 1 
and write 

W(x)  = g:f(x). (5) 

The partition function (per unit volume) may be scaled to the de Broglie 
length. It is 

<01p(e)10> = B '/2f0%x exp( 
g2/~2 
- g -  

(6) 

This shows that if f(x) approaches a one-dimensional 8 function, the 
partition function is the free particle (2rrfl)-~/2 multiplied by a function of 
g2f13/2. In general, whenever the characteristic functional of the random 
process is known, we can directly see the dependence of the averaged 
density matrix on the parameters describing the process. This is a special 
case of the more general elimination of degrees of freedom coupled to a 
particle that was first highlighted by Feynman in his approach to quantum 
electrodynamics. The price that must be paid is the occurrence of a 
"multitime" action. The random potential problem leads to one of the 
simplest of those actions. 

It comes down to the question of whether there are good techniques 
for evaluating this type of P.I. The most striking indication that really new 
results can be obtained was Feynman's polaron theory. He used a qua- 
dratic two-time action to define a soluble model or unperturbed problem. 
The difference between the actual action and the quadratic was taken as 
the perturbation. The choice of a model action is usually made on grounds 
of mathematical simplicity. One can also motivate the choice on physical 
grounds. Consider the particle to be coupled in a simple manner to a model 
dynamical system or reservoir. The model system can have fewer or more 
degrees of freedom than the original system that is coupled to the particle. 
It may be possible to eliminate the model system degrees of freedom and 
one is left with a model action for the averaged density matrix as a starting 
point for further analysis. As was the case for the P.I. approach to the 
potential problem, this can be combined with upper bound (U.B.) and 
lower bound (L.B.) techniques to obtain results outside the framework of 
conventional Hamiltonian approximation schemes. 
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To return to the Gaussian random potential, there are a number of 
questions that should be answered. First there is the dependence of O on g 
and/3 in the four limiting cases where one of the two variables is sent to 
either zero or infinity, with the other variable held fixed. What is the 
analytic dependence on dimensionality and on the type of covariance 
function f(x)? A second question is whether one can devise approximations 
to compute O to, say, a guaranteed accuracy of 1% for all values of g and/3. 
A third question is to understand the analytic properties of p as a function 
of g and/3. One might be able to answer the first two questions satisfacto- 
rily, without much insight into the third question. Even though there have 
been numerous studies, there is no systematic analysis of these questions. 
Our aim is to provide such analysis. 

The average over the potentials that leads to the two-time action 
involves counting the contribution from a large number of different config- 
urations. The partition function has the simplifying feature that each 
configuration contributes with the same sign. There are shallow and deep 
isolated traps, nearly overlapping traps, etc. From the eigenfunction decom- 
position of the density matrix for each configuration, we know that there 
will be distinct effects from bound states. What remains after the averaging 
process is not clear. Still, since the bound state properties of shallow traps 
depend on the space dimensionality, one expects the two time P.I. to have 
analytic properties that depend on dimensionality. It is desirable to put the 
mathematical schemes for evaluating path integral in correspondence with 
the physics of traps. 

There is another type of problem that is of conceptual interest. It is the 
study of the white noise limit. (7-9) In d dimensions we take 

1 1 e x p ( - x 2 / L  2) (7) W(x)  = V o La ~ra/2 

and ask for the behavior as L ~ 0 .  The smoothest possible covariance 
function is used in taking this limit. The results are only finite for d = 1. 
But the nature of the divergence for d/> 2 is of interest. One wants to 
isolate all of the divergent terms as L ~ 0 .  For d/> 3 the degree of 
divergence indicated by perturbation theory is wrong, but an analysis using 
a quadratic trial action leads to a tabulation of the divergent terms. For 
d = 2 this theory predicts a perturbation theory divergence for V 0 fi < 2~r 
and a stronger divergence for Vofl > 2~r. It is not certain that  the exact 
answer has this character. 

The main tools of the analysis of this paper were developed in two 
earlier papers on upper and lower bounds for Wiener integrals. (~~ The 
exact result is squeezed between upper and lower bounds. We start with 
relatively elementary approaches and proceed to more sophisticated meth- 
ods as the subtleties emerge. 
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In Section 2 lower and upper bounds based on the free action are 
discussed. In one set of bounds one needs the correlation functions asso- 
ciated with graphs of increasing complexity. We write 

I ( f l )  = (2qrfi)a/2< 0]p(fl)10 } = ex p E  (8) 

Using the Feynman variation principle one finds the lower bound 

E >1 gZHx(fi) (9) 

where Hi(f l)  involves a correlation function Ko(zlfl  ) and the covariance 
function f(z).  We also have the trivial upper bound E < g2f12/2. Using 
coupling constant integrations we find a series of improvements. We also 
describe the Symanzik double time upper bounds and their improvement 
by coupling constant integration. This puts us on the road to squeezing the 
exact result when g and fl are small. We also discuss the single-time 
Symanzik upper bound. This involves a fl dependent potential with the 
shape and range of the covariance function. It exhibits effects due to 
shallow and deep traps and a dependence on dimensionality in the g -~0 ;  
fl ~ 0 limit. The implications for the white noise limit are also examined. 

In Section 3 we discuss a lower bound based on a simple trap picture, 
using a self-consistent-field type of functional. This is accurate for the first 
two terms in the g ~ oe or fl---> oe limit. It exhibits the dependence on the 
covariance function and some dimension-dependent results in a particu- 
larly simple form. The functional is inapplicable in the g ~ 0 or fl ~ 0 limit 
when the free action bound is superior. Together with the upper bounds of 
Section 2 it establishes the nature of the white noise limiting behavior for 
d~>3. 

In Section 4 the lower bounds are studied with a quadratic trial action. 
This has already been used to study some aspects of the problem by 
Bezak ~12) and particularly by Samathiyakanit. ~13~ It was also used by the 
present author. ~14) It provides a reasonable, rough overall picture applica- 
ble in all limits for g and ft. The present treatment is more complete and 
uncovers some new features. 

In Section 5 we treat the white noise limit, comparing the results of the 
lower bound free action, trap functional, and quadratic action estimates. As 
already mentioned, the nature of the divergent terms is clear for d > 3 and 
for V 0 fl > 2er when d = 2. 

In action 6, the delicate d = 2 white noise limit is discussed. The 
formulas of the quadratic action theory show an interesting transition at 
Vofl--~2~r from a logarithmic to quadratic divergence. There is still 'a gap 
between upper and lower bounds for the V 0 fl < 2~r sector. More powerful 
upper and lower bounds may be needed to establish the exact behavior. 

In the conclusion we indicate some improvements that are feasible and 
mention areas where a strengthening of the analytic tools is needed. 
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. BOUNDS BASED ON THE FREE PARTICLE ACTION 

The noninteracting particle density matrix is 

(XlIOF ( ~ )IX2) = s  (27 r f i ) -d /2exp[ -  (X l -- X2)2/2fl] 

I t  will be useful to introduce 

ABx = (2~rfl)d/2DBx , 

We study 

Here 

s ~ = 1 

I (  fl ) = (2~rfi)d/2(01O ( fi )10) = s  exp(hA) 

a = a2~V2 

A 
and ~(z)  is the correlation functional 

( lO)  

(11) 

( t2)  

(13) 

(14) 

where 

f(''')--,fo'dU,fo"du2ffdy, dy2(...) 

The perturbation series is 
oo 0 oo 

=0 ~ dO m=O --~" Am (15) 

We need the N point correlation functions 

KF(Z , I z2l . . . z.) = s 1 7 6  ~ ( z 0  . . . ~)(z.) (16) 

(17) 

A 2 ---- f f f(~f~z1)f(ff--~z2)KF(Z 1 I Z2) dZl dz2 

The lowest-order correlation function can be written in terms of the 
free particle density matrices as 

= 2(2~)d/2f(OiPF(1 -- U,)[y,)(y, IPF(U , -- u2)ly2) KF(Z) 

• <Y2lPF(U2)IO)8(Y~ - Y2 - z )  ( 1 8 )  
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The integrals over Yl and Y2 and over one of the "time" variables may 
be performed. Then 

where the d dependence in K f has been indicated. 
There is the exact result 

1 1 8 
KF(d + 21 ]z) = - 2~ ]z~ 8]z[ "KF(al [z) (20) 

so that one only needs K F for d = 1 and d = 2. For d = 1 

~ -  erfc(~-]zl) (21) KF(ll Iz) = W 

This leads to the particularly simple form for d = 3: 

1 ~ e x p ( - a z  2) (22) KF(3I Iz) = 7 

K F is defined so that fKF(z)dz = 1. The limiting behavior as Izl-+0 is 

KF(lt 10) -- (Tr/2) '/2, KF(211z)-->ln(1/Izl) (23) 

and KF(d I Iz)--> Izl 2-s, d > 3. For Izl  

KF(d I ] z )~  I~l exp( -2z2) ,  all d, as z-~ cr (24) 

We now list lower and upper bounds that only involve KF(Z ). The 
Feynman lower bound, accurate to order g2, is 

l n I  > hA 1 (25) 

The trivial upper bound [based on f(z)  < f ( 0 ) =  1] is 

i n / <  X (26) 

This bound actually gives the leading term as g--> r for fixed/3 or/3---> 
for fixed g. 

As was shown in our earlier paper, coupling constant integration on 
the trivial bound yields 

I <  l + A l ( e  x -  1) (27) 

This improved bound interpolates between the exact limits. It is, 
however, a crude interpolation. There is another U.B. that also interpolates, 
but involves the full KF(Z), rather than just A 1 . It is the double-time 
Symanzik bound 

I <<.fdzKF(Z)exp[Xf(,fflz)] (28) 
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Next, we reduce the uncertainty in the value of ! by taking into 
account second-order diagrams. They are needed to evaluate KF(ZllZ2). 
One has to take account of the different time orderings. 

Analytically, 

(2~r) a/2 
KF(Zl I z2) - 3 f r  

- -  J t 6 ( Y ,  - Y2-  zl)6(Y3 - Y4-  Z2) 

+ 8(yl - Y4 - zOS(Y2 - Y3 - z2) 

+ 6(Yl - Y3 - zl)6(Y2 - Y4 - z2)} 

• (OIOF(1 - u~)[y~)(y~lOF(U~ - u2)IY2)(Y2IOF(U2 - u3)lY3) 

• (Y31OF(U3 -- u4)lY4)(Y4lOF(U4)lO ) (29) 

where f (  . �9 �9 ) o f~ du]f~' du2f~) 2 du3f; 3 d u 4 f f f  f dy] dy 2 dy 3 dy 4 ( .  �9 �9 ). This 
may be simplified using Fourier and Laplace transforms, but we will not 
use the explicit form in this paper. 

Using a coupling constant integration, we can improve the elementary 
Feynman bound. One finds 

I >/ 1 +  exp 2t~-- 7 - 1  (30) 

This result is accurate to order g4, but again does not go to the correct 
g o  oe limit. 

A second coupling constant integration on the trivial upper bound 
yields the g4 accurate result 

I <  l + h A  l + A2[e  x - l - x ]  (31) 

There are other U.B. that require a knowledge of the full KF(Zl I Z2). A 
coupling constant integration on the Symanzik double-time bound yields 

f(ff--~z,) [ exp(~f(~_~Ze) ) 1 l(gIB)< l + f fdz, dZzKF(ZllZ2) f(~f_~z2) --](32) 
This is also accurate to g4 and contains the g o oo limit. Finally there is a 
two-center U.B. 

This is not accurate to order g4, although it has the g o  oc limit. Its 
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importance is that it is the second of a series of bounds that converges to 
the exact result. 

We now take stock. The perturbation expansion can, of course, be 
reorganized into a cumulant expansion, 

I n / =  hA 1 + �89 - A 2) + . - .  (34) 

However, the domain of accuracy is unclear. Our rearrangements of the 
same diagrams into expressions that represent upper and lower bounds 
provide a control on the accuracy. For example, for f i n  1 one can squeeze 
the result for I so that the bounds are within 1% of each other for g2 < 2. 
To do the same thing for large values of g2, one needs mainly to improve 
the lower bounds. This will be done in a later section. 

Here we note that the next step in improving upper bounds leads to 
some qualitative new features even in the region g << 1. These features are 
related to the inclusion of configurations representing shallow traps leading 
to bound states. The Symanzik single-time U.B. is 

I<(2~fl)a/2fo~ g-~-fooBf(x(u))du ] (35) 

o r  

This is the density matrix for a particle that moves in a potential whose 
shape is that of the covariance function and is of unit range. It has a 
temperature-dependent strength g2fl/2 = -X.  It can be analyzed by stan- 
dard methods based on the solution of the Bloch equation. This was done 
explicitly for delta shell potential in Ref. 10. 

There is a decisive dependence on dimensionality, even in the limit 
g << 1. For d/> 3 there is no bound state. It makes an appearance only at a 
critical finite value of g that depends on ft. On the other hand, for d = 2, 
there is at least one bound state for all values of g. When g << 1, I has a 
nonanalytic expansion of finite order. Thus, even if the upper and lower 
bounds of the first part of this section control I for g << 1, the physics of the 
shallow traps is missing. 

The single-time Symanzik U.B. sheds light on some other points. It 
could be analyzed by approximation methods similar to those involving the 
quadratic, translation-invariant action, which we will apply later to the 
original I. For  example, one can use the simple oscillator trial -(co2/2) f~xZdu and determine c0(g, fl). Then one does cumulant perturbation 
theory or upper- and lower-bound analysis. One finds that these methods 
are not adequate to deal with the weak bound state in two dimensions. The 
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trial action must be more closely related to the shape of the covariance 
function f(x). 

It is easy to analyze the Symanzik U.B. in the limit g ~ oe or fl ~ oe 
using an oscillator trial action. For the covariance f(x) -- e x p ( -  x 2) we find 
to leading order 

w2~g2/33/2 (37) 

I n / <  g2/32 d d 
2 2 ~ ~  ln~ " ' "  

The first term coincides with the lower bound that is found from the 
trap functional (Section 3) or from a translation-invariant quadratic action 
(Section 4). The second term, corresponding to a harmonic well zero-point 
energy, however, has a coefficient that is smaller in magnitude than the 
corresponding lower-bound term. Thus the Symanzik U.B. is not as strong 
as we would like. Our multicenter generalizations (~~ do not correct the 
second term to any finite order. 

We now discuss the implications of the U.B. for the white noise limit. 
One can write 

Now as L ~ 0, B0 = B~ L2~ ~.  In two dimensions, there is a contribu- 
tion from the bound state eigenvalue which as a function of V0 fl/2~r. The 
corresponding contribution to In I is B0 times this function. Thus there is an 
L -2 divergence for all values of Vofl/2~r. The gap between the upper and 
lower bounds is now very serious, since the harmonic lower bound yields 
only a logarithmic divergence. 

3. S INGLE-TRAP LOWER BOUND 

There is an elementary bound that is relevant to the g ~ oe or /?  -~ oe 
limits. Physically it describes the contributions of isolated deep traps to the 
partition function. This type of expression occurs in the collective variable 
theories of Halperin and Lax (15) and Zittarz and Langer. (16) A particularly 
simple result has been derived by Luttinger. (17) As applied to the Gaussian 
noise problem his variational method yields the lower bound 

In /> /  E (39) 

- + f f - 
Here �9 is a normalized function chosen so as to maximize E. We refer to 
this expression as the trap functional. Donsker and Varadhan have estab- 
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lished the remarkable result (Is) that this gives the exact leading term as 
/7 ~ oo. They derive an upper bound which coincides with the lower bound. 
It leads to the nonlinear eigenvalue problem 

_ �89 72~It _ /7x l t (x ) f  W( x i Xl)Xlt2(Xl)ax 1 = ~Lxlt(X) (40) 

It is possible to find the exact solution when W(x) is a one- 
dimensional 8 function. Our interest initially is in the case where the 
covariance length L is finite and is set equal to unity. The results depend 
primarily on a scale length b, the secondary dependence on the shape of xI'. 
Let 

,I,(x) = (b-a/2),r,(x/b), f*~dy= 1 (41) 

E_/7 2b 21 S( ~O%It 1 )2 dy+--fi-g2 2 fM(y)f(yb)dy (42) 

M(y)  = - y0q'~(y,) ay, 

dependence on fl and g when f(z) = 0 (1 - Iz]) or is a 8 shell potential. 
As fig2 decreases, the size of the trap increases. To study the limit 

fig2<< 1, consider the case of trial functions +I(Y) such that M(0), 
MI(0) . . . .  are finite. Then as b ~  ~o 

/3 2b 2 ~ ay 

+ { M(O) 
- 7  ff(Y) dy 

MI(o) (,  ,~ } 
+ - - a l y l f d y  + . . .  (43) bd+i 

There is now a dependence on dimension. For d = 1, a solution with a 
localized solution and positive E is possible when/7g2 << 1. For d >/3 there 
is no solution when fir<< 1. 

An overview of the content of the trap functional is possible with the 
function: 

ff, l(x) = ( 2~ )a/4exp( - x:) (44) 

The results are closely related to the leading terms of the first cumulant 
quadratic action lower bound. Then 

M(x )  = (~r) a/2exp(-x2) 
(45) 

rid + (Tr)_d/2 f(yb)e_g dy 
= - 2b--- 7 
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For the function f(z) = exp(-Z2), 

E~ = _ _ _  
g~2 /3d + ( 1 + b 2) - d/2 

2b 2 T 

2 _ b 4 / ( 1  + b2)(-d/2-0 
g2/3 

(46) 

The explicit result for d = 2 is 

2 
(47) 

The size of the trap grows indefinitely as g2/3 ~ 2. We then switch to a 
delocalized solution and E 2 = 0 for g2/3 < 2. 

For d > 3 the localized solution is lost when g2fi/2 is of the order of 
unity. The switch to the extended solution occurs abruptly at a finite value 
of b. 

For d =  1 the result for g2/3/2<<1 is b~2/g2/3 -->r and E 1 = 
fl(g2fl/2)2. In this case the trap functional can be used for all values of 
g2/3. However, it is inferior to the free action bound in the g--)0 limit. 

We now discuss the predictions of the trap functional when the 
covariance length L ~ 0. In one dimension there is a covergent result for E. 
The functional 

E _  1 O~ /3 2 f (  - ~  2dx+fl--V2~ (48) 

is maximized by 

/33Vg (49)  ( /3V~ sech(x fl~-~-~176 ) E- 24 

In two dimensions, we introduce 

E. L2 
/3 

_ 2Y 21 f (  ~i~xttl )2 M2x"~-2-~"-~V 0 f e-~=M(x)d~x 
( so )  
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This may be analyzed in the harmonic approximation. We find 

(51) ~( ~gol/2 } 2 
) 1 

The leading divergent term agrees with the trivial U.B. ~ , ~  oe as flVo/27r 
1 and we shift to an extended state with E = 0 when flVo/2~r < 1. We 

have examined a wide class of more accurate q~ and find that the shift 
occurs at a somewhat lower value of flVo, but there is still only a 
delocalized solution when flVo << 1. (However, we do not have a rigorous 
proof of this statement for the most general ~ . )  Thus, in two dimensions 
the trap functional has the remarkable feature that the divergence has a 
1/L 2 behavior when flV o > 2~r and E = 0 for flV0<< 1. We know from the 
free action lower bound that the behavior of E is at least In L in the latter 
case. 

For d >/3 the leading term in E is flVo/(2~rd/ELd) and an analysis by 
Taylor expansion of the covariance function is feasible. If ,I, is scaled by a 
length a we find in harmonic approximation that 

a~L(d-2)/4 

The second term in E is ~ I / L  (d/2)+1 and the third term is 1/L. We find 
E as an expansion in a 2 and can write down the divergent terms. One needs 
( 4 / d -  2) terms beyond the third term to reach the last serving term L ~ 
This analysis applies for any finite values of fi and V 0. 

4. QUADRATIC ACTION LOWER BOUND 

We now work out the consequences of the lower-bound theory that 
uses a quadratic action. It  is appropriate to both the fl--> o% g ~ oo limits, 
where it makes contact with the trap functional. It  also goes over to the free 
action lower bound as g--~ 0 or fi--> O. 

Write 

I -- fo~ exp(co2A0) �9 exp(XA - t02Ao) (52) 

where A o is the quadratic form: 

(53) 
1 2 

. 0  
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The lower bound is 

where 

i n / >  In Qo - (.02 31n Q_____s + (A)o (54) a(,~ 2) 

= (0Alx exp(wZAo) Qo 
(55) 

1 foOalxA exp(,o~Ao) <A>o = fro 

Here w is to be chosen to make I as large as possible. One needs correlation 
functions for the "action" A o. The second term in A o is handled by using 
the parametric identity 

exp(z2/2) = (2Tr)-a/2 f daexp(a . z _ a 2 -~- ) (56) 

Let 

Then 

( z l r ( 1 ) [ 0 )  =s , ~o = a / 2  (57) 

(zlr(1)10 > = a d f d a  <z+ ozlp(1)a ]> (58) 

where p is the density matrix for an oscillator of frequency ~2 

( ~ )d/2(2vr)-d/2 
(x~lp(u)lx2) = sinh a u  

• (59) 

We have the explicit form (13A4'19) 

6) Z 2 (zlr(1)[0) = ( ~ ) a e x p [  - -~- o~coth~] (60) 

When ~o~0 the spatial range is 1. When o~>> 1 it is 1/,f~-, describing a 
more localized state. 

Using the identity and the standard rules for path integrals 

s Alxe~176 -- Yl) 

= fP(daKz+ alp(1 - u,)ly, + a ) (y ,  + a l p ( u 0 l a  ) (61) 
J 
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The translation-invariant form of A 0 gives rise to the a integration. The 
two-point function is 

"jo~Alxe~AO3(x(u,) -- y,)3(x(u 2 - Y2) 

= adfa  zip(1 - Ul)lY 1 + a ) ( y ,  + a l p ( u  1 - uz)lY2 + a )  

• (Y2 + alp(u2)[a) (62) 

The correlation function that enters into the determination of the 
partition function is 

We find 

1 foo~ ~:A~ 

Qo = (r r d/2 

1 - a /2  2 g(dl  Izl,o) = f0 dv(2~rH) e x p ( - z  /2H) 

H = (cosh ~o - cosh wv)/2~o sinh o~ 

(63) 

(64) 

We have fK(a[[zl~o)dz= 1. The relation between the K for different 
dimensions is 

1 1 0 K ( d l  Izl,~) K(d+ 2llzl~o ) = 2~r Izl Olzl (65) 

The lower bound is 

where 

l n I  / > - - - ) T + ~  qb(z) (66) 

~~ Qo _ d l n ( ~  d ( 1 -  cotho~) (67) 
T -- in Qo 2(~o2) ) - 

We can obtain explicit results in the limiting cases: low frequency, 
a~ << 1; high frequency, o~ >> 1. What  this means in terms of the parameters g 
and fl emerges from the analysis. The intermediate case can be analyzed 
numerically by plotting g(fl, o~) from 3 lnI/3o~ = O, and inverting graphi- 
cally. 

We study three types of correlation function: ( a ) f ( z ) =  6(z) in one 
dimension, (b) f(z) = exp(-Iz[), (c) f(z) -- exp( -  z2). 
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4.1. Low-Frequency Limit 

We will obtain an improvement on the lower bound provided by the 
free action. However, the result is not completely accurate to order g4. To 
obtain this one needs a lower bound based on a coupling constant integra- 
tion. This is not done in this paper. 

For (-0 << 1, 

T o  - ~ (-0 4 

(68) 
1 [ (  (-02 ) H o 4 ( l - u  2) l -  l - u  2) + . . -  

In all cases the opt imum frequency ~0 is proportional to g. 
In the one-dimensional &function case, 

g2fl 3/2 r176 2 
(A)o-~ ~ ( ~ ) ' / 2 ( 1  + ~ - +  " ' ' )  (69) 

15 r 2--- ) "-f'~ ( -~ 11/2g2~ 3/2 
(70) 

~r + 1 ~4 E - - - ) (  ~ - )1 /2  g2f13/2 
2 

The expansion requires g2fl 3/2 << 1. 
For more general f(z), with ~ ( z ) -  e-~=/= d/2, 

g2f12 f 1/2 , 
( A ) ~  L f d z ~ ( z ) f ~  dO 

(-02 R \1/2 

]} Xfo~/Z(sinaO)fX Izlsin 0 dO (71) 

t~ , 1/2 r ' 1/2 ] 
~o2 90 g2f12 ~/2sin4/f i [ 

= d 48 ( i f )  fdz'~(Z)fo (if) Izlsin0j dO (72) 
k 

The increase in E is (d/180)w 4, 
For f(z) = e -Izl we have as floO, 6o20gZfls/2, while for f(z) = e-Z2~ 2 

o gZfl 3. If g << 1, w becomes large as fl o ~ for dimensionality less or equal 
to three. 
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4.2. High-Frequency Theory 

In the high-frequency limit we neglect all exponential contributions of 

Then 

T-+ - d oa + d lno~-  d 
2 2 

(73) 
H-+ ~ (1 - e -'~ 

In the extreme ~o>> 1 limit we take H-+ 1/2oa and neglect the dlnoa and 
- d / 2  terms in T. We define a parameter 

x = (f l /oa) 1/2 (74) 

E becomes the trap function with Gaussian trial and with x identified with 
the length b of Eq. (41). x must be less than 1 for the validity of the 
high-frequency expansion. 

Our aim is now to obtain all of the surviving terms in E as g-+ oe 
(fixed /3) and as /3-+ oe (fixed g). We start with the one-dimensional 8 
function where the main features of the calculation emerge in a simple way. 

4.2.1. One-Dimensional 8 Function. The result, neglecting expo- 
nential terms, is explicitly 

( A ) 0 -  g2/322 '/~1 xl[ 1+  -~x2( Tr-~" ln2)] (75) 

Define the expansion parameter 

8 -  2;7 
g2fi (76) 

, ) E = ln(2/3) 2 2x 2 ~x + ~ - ln2 - 21nx (77) 

The condition a E / ~ x  = 0 yields 

8 ( 1 - 7 2 x 2 ) = x - - - - f f ( ~ 1 3  ~ r - l n 2 )  (78) 

Using this to eliminate the - f l / 2 x  2 term, 

E = ~ 5 + l n ( 2 f i  ) -  - 2 l n x +  a 1+  ( - ~ - l n 2  ~ ( ~ - - l n 2 )  

(79) 

type e-'~ Then 
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We find an expansion 

x = 3 +  - ~ - 1 n 2 - 2  + . . -  

For the surviving terms as g--) oo or fl ~ oe we only need x ~ 3 in Eq. (82). 
Then 

oa --> g4 B 3/4~" 
(81) 

B E-->232 + l n 2 f l - 2 1 n 3 - 1 + 3 ( ~ - l n 2 1  

We have the conditions g2fi > 2~- and g2fl. fl 1/2 > 2(2~r)1/2. Since the 
lead term is only equivalent to the Gaussian trial function in the trap 
functional we have E---> g4B3/8~r instead of the exact g4fl 3/24. 

To treat more general covariance functions in the high-frequency limit, 
write the average of the action as 

g2fi2 f s ] f [  IZIx(1 _ e-~ (~(Z) dZ ( A ) 0 -  2 (82) 

Consistent with the neglect of exponential contributions, this may be put in 
the form 

g2f12 82f12 
(A )~  2 + - W -  f~(~)[ f ( Iz lx) -  1]a, 

+ g--~-x2s 1/2] --f(IzIx)} (83) 

T =  d/~ 2dlnx  + dln(2fl) - d/2 (84) 
2x 2 

4.2.2. f(z) = exp(-]zl). Using this to eliminate the - f l / 2 x  2 term, 

 lnx+X[  -ln )lx  ~ E =  fl + l n ( 2 f l ) - ~  ~ 1+  ( 2  ~ ( - 2  
262 

(85) 
We find an expansion 

33 2) (86) + 
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We define 

A m ~flzlm,(z)dz ( 8 7 )  

F(x)= l f r -Nx-') 
oo 

= - x  + 2 Fox"~,,! (88) 
n = 2  

X 2 G(x) = ~ fo~d~ f dzr lz[x(1- e-n) 1/2- exp ( -  [zlx)] 

oo 

= E G.x"/n! (89) 
n = 3  

A useful expansion parameter is 

./3 = 2a / g2fl A, (90) 

Then 

E -  g2B2 2 
AE= dB 

2x 2 

d 
- - -  + d l n ( 2 f l )  - ~ -  + AE 

(91) 

The condition OE/Ox = 0 yields 

73 = -x3(F 1 + Gl/fl)/(1 - 2x2/fl) (92) 

As in the one-dimensional 6 function case, we use this to write 

dfl { x F1+ G1/fl ) 
A E = - 2 d l n x + ~ 5 -  F + G +  2 i ~ - 2 ~  (93) 

We can now set about to determining all the terms in AE that survive when 
g ~  or B ~  oo. 

One only needs x to lowest order (x -~ oe) in the following terms: 

d G + x ~ 5 d ( 1  - ln2) 73 
(94) 

d__ x3Fl ~ d 
73 

Thus all of the surviving terms are contained in 

dfl { F +  x zXE=--2dln't+[5(1--1n2)--l]d+T2 -~F 1} (95) 
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The leading term is - (3 /2)df lx /y  3, so that we require x to an 
accuracy of ~/3 and y3/fl.  

Let ((~) be the solution of 

]/3 = _~3FI(~ ) 

expressed as a series 

= E Cn "~n' C 1 = 1 

Then  3E2 2] 
x = ~ ( , / ) + - f i  - ~ F 2 + 2 ( 1 - 1 n 2 ) -  

Finally, 

(96) 

(97) 

(98) 

We now have F l(x ~ O) -~ - x, F(x ~ O) -~ - x2/2. 
Equations (90)-(93) now apply with y 3 replaced by 2/g2fl. In addition 

the expansions are in even powers of x. The study of the surviving terms 
requires minor modifications. We find 

2__~ + d 2_~ F + -~ F ) (103) A E = -  in g2fl ~ +dE g2fl 

To requisite accuracy, 

( 2 )  3/4 
- - f -  - -  (104) 

(101) 

X2 ) -d/2 ) 
1 + x 2 e - n  - 1 (102) 

1 -1}  F(x) = ~ {(1 + x2) -d/2 

l x2 {( 
C(x) - d (1 + x2) d/2 f~176 1 

A E = _ 2 d l n y + a [ 2 ( l _ l n 2 ) _ F 2 ] + d f l ( F +  ~ dF) (99) y3 ~ -d-g 

This completes the task of finding the surviving terms for the covari- 
ance function f(z) = exp( -  [zl). The leading term is x-~  ~ or 

A \2/3 
r g4/3~5/3( ~d ) (100) 

We require g2/~ > 1 and g2fl. fl3/2 > 1. 

_z 2 
4 . 2 . 3 .  f(z) -- e . For this covariance function choose 
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where ~ is the solution of 

2 _ d F  (105) 
g2/3 

In leading order ~(2/g2/3)  1/4. The series then goes in steps of (2/g2fl) 1/2. 
For the covariance function f =  e x p ( - z  2) the leading term for the fre- 
quency is ~o~g/33/2/~/2. This has the same dependence on g and/3 as for 
the low-frequency case, but with a different coefficient. 

It should not be forgotten that the coefficients of the divergent terms 
will be changed when one computes the second- and third-order cumulants. 
However, the nature of the series is unaltered. 

5. THE WHITE NOISE LIMIT 

We now adapt our results to study the behavior of the partition 
function as the covariance length L ~ 0. We approach this limit with the 
smooth covariance function 

V o e x p ( - x 2 / L  2) 
W(x) - (106) 

2 L d ,Ira/2 

In the one-dimensional case we have obtained finite results. 
First note the behavior predicted by the free action lower bound. In 

two dimensions we have 

(107) 
q2 1 L 2 

2-B 
Thus there is a logarithmic divergence as L ~ 0. We know that this is wrong 
when Vofl/27r > 1, since the trap functional gives a better lower bound 
which diverges as 1//L 2. On the other hand, the trap functional with a 
Gaussian trial function leads to an infinitely extended state when V0/3 << 1, 
implying only E 2/> 0. So the free action bound is superior. The two- 
dimensional case is particularly delicate, and we take up the analysis with 
the harmonic trial action in the next section. The question at issue is 
whether there is a change in the degree of divergence at a finite value of 
Vo/3. 

In three dimensions the free action lower bound is 

V o f l  3/2 E 3 /> - - - ~  ~r - 1 (108) 
1 + 2L2/fl 
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with a linear divergence as L ~ 0. On the other hand the trap functional 
yields a lower bound 

E3/> fl2V~ 1 3( V0/~3 ) 1/2 
- -  ~ 1 / L  5/2 (109) 
2~3/2 L 3 8 ,.ff 3 / 2 

The leading term coincides with the trivial upper bound. So there is indeed 
a 1 / L  3 divergence. It only remains to find the surviving terms as L ~ 0 .  
The same holds true for d >/4 with coincidence of the leading terms in the 
U.B. and L.B. 

For d/> 3 one can find the set of divergent terms for the trap 
functional. The first two terms are exact. However, the coefficients of the 
subsequent terms are not exact, and we miss a in L term. For the smooth 
covariance functional L-aexp(  - x2 /L2) ,  the quadratic action also gives the 
first two terms. In addition the logarithmic term is accurate. 

A simple special case of the quadratic action lower bound is a bound 
based on e x p ( -  x 2)/> 1 - x 2. We choose 

( VO ) l / 2 t ~ 3 / 2 / L ( l + d / 2 )  (110) 
~0 = 8~ra/-------- 2 

It is then not necessary to evaluate a first cumulant. The lower bound is 
simply 

E a>l - d l n  sinh~o + - -  (111) 
~o L a 2rca/2 

The first two terms are exact, as is the coefficient of the logarithmic term. 
A more complete analysis with the quadratic action, including the 

improvement from the average of the residual action, may be carried out 
by adapting the results of Section 4. The number of dive~gent terms 
depends on the dimensionality. The expansion parameter is 

( 2~r ) 1/4 1~0= ~0~ t(d-2/4) (112) 

The series proceeds in powers of ~2. Thus the first term beyond the - & 0  
term is of order L -2, and the term beyond that is of order L (d/2-3) . It is the 
last surviving term if d/> 6. For general d we must include (d + 2 ) / (d  - 2) 
terms beyond the - & 0  term. While the degree of divergence of the most 
divergent term increases with the dimension, the number of divergent terms 
increases. 

The theory of the L ~ 0 is incomplete until we compute the corrections 
arising from a small number of higher cumulants. The number needed 
again depends on d. This changes the coefficients of the divergent terms, 
but the nature of the series is unaltered. 
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6. TWO-DIMENSIONAL CASE 

We have found that  the L ~ 0 limit presents special problems in the 
two-dimensional case. We present the lower bound  estimate provided by 
the quadratic trial action. 

For  the Gaussian covariance function, the explicit result is 

[ o cosho~ - 1 + (o2 - 1)'/2sinh~0 ] Vofl sin__h_~ in - - -  (113) 
~ A ) ~  2~r (0 2 - 1)1/2 o c--0~l~0- 

o = cosh r + @ sinh ~o 
P o  

(114) 
Bo = B / L  2 

We will also need the complete expression for T. 
The key parameter  is 

a = (Vofl/27r) 1/2 (115) 

There are two domains depending on whether a > 1 or a < 1. 
(1) a > 1. As was noted earlier the high-frequency expansion r >> 1 is 

relevant when a > 1. Then w-~ oo and 

O0 "~t/2 ~ \1/2 
1 - ( - - ~ o ]  = ( - - ~ ) L  (116) 

x o 

is finite and nonzero as L - ~  0. In this limit 

] (A)o~a2f lo (1  + x 2) ' 1 + -~oln(1 + x 2) (117) 

1 rio 21nx ~ (118) T o  2 ln(2flo ) -  - ~x-- 7 - 

To order L 2 

1 ax~ 
x~ 2 a -  1 + 4fl ~ (119) 

There is no solution of this equation for a << 1. To order L ~ 

E = flo(a - 1)2+ 21n(2flo ) - 1 + a l n (  a ) + ln(a  - 1) (120) 

There are both 1 /L  2 and I n ( l / L )  divergent terms 
(2) a < 1. Here the frequency ~0 is finite as L---> 0 and 1/Xo--~0: 

(A)o---~ aZln(2flo) + a21n[(sinh~o)/o~] (121) 

E---~ a21n(2flo) + (a  2 - 2)ln[(sinh~o)/~o] + tocothw - 1 (122) 
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The low-frequency theory is obtained when a << 1. Then 

0~--->t 3 ~  
(123) 

E ~  ol21n(2/30) + 5a4 

with a logarithmic divergence in L. 
However, we can now do better and study the approach a ~ 1 with 

a < 1. We have o~ > 1, but it is independent of L as L ~ 0 .  Then 

~0--> ( 2  - a 2 ) / ( 1  - a 2) 
(124) 

E--> a21n(2/3o) + (~2 _ 2)[~ -ln(2~o)] + ~ - 1 

Now, as a---> 1 

1 1 w--> 
2 

(125) 
E ~ a Z l n ( 2 f l 0 ) + l n ( 1 - - ~ l  ) - 2  

This is the domain that cannot be handled by the trap bound or by the free 
action bound. The divergence is logarithmic. There we have the prediction 
of the quadratic action of a remarkable transition at a = 1 from a logarith- 
mic to a quadratic divergence. 

The reality of this transition is at present uncertain. The analysis of the 
trap functional shows that the quadratic divergence persists to values of 
somewhat less than 1. Our analysis of the case a << 1 in Section 3 is 
incomplete. We found no trap for a << 1 provided the trial function qq(x) is 
such that M(O), M 1(0) . . . .  exist. It may be that there is a trap with E 2 v ~ 0, 
in which case the quadratically divergent lower bound would be established 
for all a. We have made a variational analysis of the two-dimensional trap 
functional, using trial functions of the type that yields the two-dimensional 
bound state for the potential problem. We find no localized solution when 
/3Vo << 1. However, a rigorous analysis of the trap functional is missing. 

7. C O N C L U S I O N S  

The path integral representing the averaged partition function for a 
particle subject to Gaussian random potentials is one of the simplest 
two-time integrals with nontrivial content. When the covariance length is 
finite the partition function depends on the strength g, the inverse tempera- 
ture/3, the dimensionality d, and on analytic properties of the covariance 
function. The partition function is a much simpler quantity than averages 
of products of Green's functions, since everything is real and positive. One 
can then apply upper- and lower-bound techniques. A series of improved 
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bounds can be related both to the inclusion of different types of configura- 
tion and to systematic approximation schemes. It seems worthwhile to try 
to realize this in detail, and to make the mathematics corresponds to 
physical intuition. 

When a problem is as simple as the present one, yet similar mathemati- 
cally to many other problems, we would like to see it treated in depth. 
Existing approaches are rather piecemeal and we have tried to make a start 
on a more thorough study. 

There are a number of points where our results are incomplete, but can 
be made complete in a relatively straightforward manner. One of these is 
the calculation, for the quadratic action, of the higher cumulant terms in 
the expansion as g ~ m, fi ~ ~ ,  or L ---> 0. Using coupling integrations, the 
correlation functions occurring in the higher cumulants can also be used to 
find better lower bounds. One coupling integration probably solves the 
problem of calculating the partition function to 1% accuracy. This will be 
done in sequel to the present paper. 

A second point is to develop model actions which express the feature 
that the covariance function falls to zero at large distances. The quadratic 
action is unphysical in this respect. We have been able to find a systematic 
scheme of model actions that deal with this problem and provide improved 
lower bounds. It is however not easy to work with them. This will also be 
developed in the sequel. As noted in the body of the paper the single-time 
Symanzik upper bound and even the multipoint and coupling integration 
generalizations noted in Ref. 1 are not strong enough to close the gap 
between upper and lower bounds in a number of cases. Examples where 
there is a gap in the leading term are the upper bounds for the one- 
dimensional 8 function and for the model quadratic action. The Donsker-  
Varadhan result shows that the lower-bound result is correct as/3 ~ m. In 
other cases the coefficient of the second term of the upper-bound expansion 
is not correct. It might be possible to improve the upper bounds by using 
the Symanzik technique with suitable trial actions. But new ideas may be 
needed. 
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